1,379 research outputs found

    Optimized Herschel/PACS photometer observing and data reduction strategies for moving solar system targets

    Get PDF
    The "TNOs are Cool!: A survey of the trans-Neptunian region" is a Herschel Open Time Key Program that aims to characterize planetary bodies at the outskirts of the Solar System using PACS and SPIRE data, mostly taken as scan-maps. In this paper we summarize our PACS data reduction scheme that uses a modified version of the standard pipeline for basic data reduction, optimized for faint, moving targets. Due to the low flux density of our targets the observations are confusion noise limited or at least often affected by bright nearby background sources at 100 and 160\,ÎĽ\mum. To overcome these problems we developed techniques to characterize and eliminate the background at the positions of our targets and a background matching technique to compensate for pointing errors. We derive a variety of maps as science data products that are used depending on the source flux and background levels and the scientific purpose. Our techniques are also applicable to a wealth of other Herschel solar system photometric observations, e.g. comets and near-Earth asteroids. The principles of our observing strategies and reduction techniques for moving targets will also be applicable for similar surveys of future infrared space projects.Comment: Accepted for publication in Experimental Astronom

    Possible ring material around centaur (2060) Chiron

    Get PDF
    We propose that several short duration events observed in past stellar occultations by Chiron were produced by rings material. From a reanalysis of the stellar occultation data in the literature we determined two possible orientations of the pole of Chiron's rings, with ecliptic coordinates l=(352+/-10) deg, b=(37+/-10) deg or l=(144+/-10) deg, b=(24+/-10) deg . The mean radius of the rings is (324 +/- 10) km. One can use the rotational lightcurve amplitude of Chiron at different epochs to distinguish between the two solutions for the pole. Both imply lower lightcurve amplitude in 2013 than in 1988, when the rotational lightcurve was first determined. We derived Chiron's rotational lightcurve in 2013 from observations at the 1.23-m CAHA telescope and indeed its amplitude is smaller than in 1988. We also present a rotational lightcurve in 2000 from images taken at CASLEO 2.15-m telescope that is consistent with our predictions. Out of the two poles the l=(144+/-10) deg, b=(24+/-10) deg solution provides a better match to a compilation of rotational lightcurve amplitudes from the literature and those presented here. We also show that using this preferred pole, Chiron's long term brightness variations are compatible with a simple model that incorporates the changing brightness of the rings as the tilt angle with respect to the Earth changes with time. Also, the variability of the water ice band in Chiron's spectra in the literature can be explained to a large degree by an icy ring system whose tilt angle changes with time and whose composition includes water ice, analogously to the case of Chariklo. We present several possible formation scenarios for the rings from qualitative points of view and speculate on the reasons why rings might be common in centaurs. We speculate on whether the known bimodal color distribution of centaurs could be due to presence of rings and lack of them

    Visible and near-infrared observations of asteroid 2012 DA14 during its closest approach of February 15, 2013

    Full text link
    Near-Earth asteroid 2012 DA14 made its closest approach on February 15, 2013, when it passed at a distance of 27,700 km from the Earth's surface. It was the first time an asteroid of moderate size was predicted to approach that close to the Earth, becoming bright enough to permit a detailed study from ground-based telescopes. Asteroid 2012 DA14 was poorly characterized before its closest approach. We acquired data using several telescopes on four Spanish observatories: the 10.4m Gran Telescopio Canarias (GTC) and the 3.6m Telescopio Nazionale Galileo (TNG), both in the El Roque de los Muchachos Observatory (ORM, La Palma); the 2.2m CAHA telescope, in the Calar Alto Observatory (Almeria); the f/3 0.77m telescope in the La Hita Observatory (Toledo); and the f/8 1.5m telescope in the Sierra Nevada Observatory (OSN, Granada). We obtained visible and near-infrared color photometry, visible spectra and time-series photometry. Visible spectra together with color photometry of 2012 DA14 show that it can be classified as an L-type asteroid, a rare spectral type with a composition similar to that of carbonaceous chondrites. The time-series photometry provides a rotational period of 8.95 +- 0.08 hours after the closest approach, and there are indications that the object suffered a spin-up during this event. The large amplitude of the light curve suggests that the object is very elongated and irregular, with an equivalent diameter of around 18m. We obtain an absolute magnitude of H_R = 24.5 +- 0.2, corresponding to H_V = 25.0 +- 0.2. The GTC photometry also gives H_V = 25.29 +- 0.14. Both values agree with the value listed at the Minor Planet Center shortly after discovery. From the absolute photometry, together with some constraints on size and shape, we compute a geometric albedo of p_V = 0.44 +- 0.20, which is slightly above the range of albedos known for L-type asteroids (0.082 - 0.405).Comment: 7 pages, 4 figures, 1 table. Accepted in A&A (June 17 2013

    "TNOs are Cool": A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations

    Get PDF
    The classical Kuiper belt contains objects both from a low-inclination, presumably primordial, distribution and from a high-inclination dynamically excited population. Based on a sample of classical TNOs with observations at thermal wavelengths we determine radiometric sizes, geometric albedos and thermal beaming factors as well as study sample properties of dynamically hot and cold classicals. Observations near the thermal peak of TNOs using infra-red space telescopes are combined with optical magnitudes using the radiometric technique with near-Earth asteroid thermal model (NEATM). We have determined three-band flux densities from Herschel/PACS observations at 70.0, 100.0 and 160.0 ÎĽ\mum and Spitzer/MIPS at 23.68 and 71.42 ÎĽ\mum when available. We have analysed 18 classical TNOs with previously unpublished data and re-analysed previously published targets with updated data reduction to determine their sizes and geometric albedos as well as beaming factors when data quality allows. We have combined these samples with classical TNOs with radiometric results in the literature for the analysis of sample properties of a total of 44 objects. We find a median geometric albedo for cold classical TNOs of 0.14 and for dynamically hot classical TNOs, excluding the Haumea family and dwarf planets, 0.085. We have determined the bulk densities of Borasisi-Pabu (2.1 g/cm^3), Varda-Ilmare (1.25 g/cm^3) and 2001 QC298 (1.14 g/cm^3) as well as updated previous density estimates of four targets. We have determined the slope parameter of the debiased cumulative size distribution of dynamically hot classical TNOs as q=2.3 +- 0.1 in the diameter range 100<D<500 km. For dynamically cold classical TNOs we determine q=5.1 +- 1.1 in the diameter range 160<D<280 km as the cold classical TNOs have a smaller maximum size.Comment: 22 pages, 7 figures Accepted to be published in Astronomy and Astrophysic

    "TNOs are Cool": A survey of the trans-Neptunian region VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects

    Full text link
    Trans-Neptunian objects (TNO) represent the leftovers of the formation of the Solar System. Their physical properties provide constraints to the models of formation and evolution of the various dynamical classes of objects in the outer Solar System. Based on a sample of 19 classical TNOs we determine radiometric sizes, geometric albedos and beaming parameters. Our sample is composed of both dynamically hot and cold classicals. We study the correlations of diameter and albedo of these two subsamples with each other and with orbital parameters, spectral slopes and colors. We have done three-band photometric observations with Herschel/PACS and we use a consistent method for data reduction and aperture photometry of this sample to obtain monochromatic flux densities at 70.0, 100.0 and 160.0 \mu m. Additionally, we use Spitzer/MIPS flux densities at 23.68 and 71.42 \mu m when available, and we present new Spitzer flux densities of eight targets. We derive diameters and albedos with the near-Earth asteroid thermal model (NEATM). As auxiliary data we use reexamined absolute visual magnitudes from the literature and data bases, part of which have been obtained by ground based programs in support of our Herschel key program. We have determined for the first time radiometric sizes and albedos of eight classical TNOs, and refined previous size and albedo estimates or limits of 11 other classicals. The new size estimates of 2002 MS4 and 120347 Salacia indicate that they are among the 10 largest TNOs known. Our new results confirm the recent findings that there are very diverse albedos among the classical TNOs and that cold classicals possess a high average albedo (0.17 +/- 0.04). Diameters of classical TNOs strongly correlate with orbital inclination in our sample. We also determine the bulk densities of six binary TNOs.Comment: 21 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    JWST observations of stellar occultations by solar system bodies and rings

    Full text link
    In this paper we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of solar system bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings, and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange-point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a by-product of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.Comment: This paper is one of a series for a special issue on Solar System observations with JWST in PASP. Accepted 2-Oct-2015. Preprint 30 pages, 5 tables, 8 figure

    Transneptunian objects and Centaurs from light curves

    Full text link
    We analyze a vast light curve database by obtaining mean rotational properties of the entire sample, determining the spin frequency distribution and comparing those data with a simple model based on hydrostatic equilibrium. For the rotation periods, the mean value obtained is 6.95 h for the whole sample, 6.88 h for the Trans-neptunian objects (TNOs) alone and 6.75 h for the Centaurs. From Maxwellian fits to the rotational frequencies distribution the mean rotation rates are 7.35 h for the entire sample, 7.71 h for the TNOs alone and 8.95 h for the Centaurs. These results are obtained by taking into account the criteria of considering a single-peak light curve for objects with amplitudes lower than 0.15 mag and a double-peak light curve for objects with variability >0.15mag. The best Maxwellian fits were obtained with the threshold between 0.10 and 0.15mag. The mean light-curve amplitude for the entire sample is 0.26 mag, 0.25mag for TNOs only, and 0.26mag for the Centaurs. The amplitude versus Hv correlation clearly indicates that the smaller (and collisionally evolved) objects are more elongated than the bigger ones. From the model results, it appears that hydrostatic equilibrium can explain the statistical results of almost the entire sample, which means hydrostatic equilibrium is probably reached by almost all TNOs in the H range [-1,7]. This implies that for plausible albedos of 0.04 to 0.20, objects with diameters from 300km to even 100km would likely be in equilibrium. Thus, the great majority of objects would qualify as being dwarf planets because they would meet the hydrostatic equilibrium condition. The best model density corresponds to 1100 kg/m3.Comment: 21 pages, 8 figures. Astronomy & Astrophysics, in pres
    • …
    corecore